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Energy eigenvalues of quartic oscillators in d~ 3 
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Abstract. We present a simple approximate analytical expression for the energy eigen- 
values E‘d’ of the pure quartic oscillator in d S 3 dimensions. The formula reproduces with 
high accuracy the results from accurate numerical computations reported in the literature. 
The eigenvalue E!$ for given n is seen to decrease as 1 increases contrary to the prediction 
of the Quigg-Rosner formula (for d = 3) which is incorrect in this respect. We also give a 
generalisation (from the pure quartic to the quartic anharmonic oscillator) of our formula, 
good for any d. This formula involves four parameters (one less in the pure quartic case) of 
which all but one are obtainable by consideration of the WKB limit; the values of all the 
parameters are independent of the dimension d. 

1. Introduction 

The literature available on higher-dimensional anharmonic oscillators is rather limited, 
when compared with that available for the one-dimensional system. Exhaustive 
numerical tables as well as many analytical formulae (with limited domains of validity) 
have been reported in the literature for the energy spectra associated with anharmonic 
potentials V = w2x2 + in one dimension, both for the case w # 0 and w = O f  
(Bazley and Fox 1961, Chan and Stelman 1963, Biswas etal 1971,1973, Lakshmanan 
and Prabhakaran 1973, Hioe and Montrolll975, Hioe etal 1976,1978, Banerjee etal 
1978, Banerjee 1978, Ginsburg and Montroll 1978, Caswell 1979, Richardson and 
Blankenbecler 1979, Halliday and Suranyi 1980, Killingbeck 1981, Mathews et a1 
1981). Bell et a1 (1970a, b, see also Lu and Nigam 1969) have computed numerically 
the first 100 energy levels of the two- and three-dimensional quartic oscillators 
(V = A ( r  r)’) by diagonalising large dimensional matrices of order 800. More recently 
Pasupathy and Singh (1980), Quigg and Rosner (1979) and Lakshmanan and Kaliap- 
pan (1980) have derived approximate formulae for the three-dimensional quartic or 
quartic anharmonic oscillator (a system of interest in charmonium physics) via WKB or 
phase integral techniques. While Pasupathy and Singh’s WKB results are for s waves, 
and are therefore equivalent to results for the one-dimensional system, the generalisa- 
tion of the s-wave result to 1 > 0 by Quigg and Rosner is incorrect. (Their claim that for 
large but fixed n, the energy will depend only on n + 1 but not on n and 1 separately is at 
variance with the formula given in this paper as well as the numerical results known for 
the system.) Lakshmanan and Kaliappan have adopted the semiclassical Bohr-Som- 
merfeld quantisation scheme and as such their analytical formula is expected to be 
t The literature on the one-dimensional oscillator is so vast that what we have given is only a selective sample 
over the years in which a variety of methods has been used to obtain results. 
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satisfactory only in the large-n regime. Since no numerical results have been given by 
them, there is no information on the degree of accuracy of their formula. However for 
two- and three-dimensional oscillators a single analytical formula which is capable of 
yielding the energy values with a high degree of accuracy for all values of the quantum 
numbers has so far been lacking. It is our aim in this paper to present a simple and 
accurate formula for the energy levels E!,:? of the pure quartic oscillator ( V = ( r  * r)') in 
d s 3 dimensions. It reproduces with considerable accuracy the numerically computed 
values reported by earlier workers, for all values of level number n and the angular 
momentum quantum number 1. To our knowledge no such formula has so far been 
published in the literature. We wish to emphasise that we consider the formula as an 
end in itself. No great profundity is involved in its derivation, but that does not detract 
in any way from its utility as a means of estimating E!,:! quickly for any desired n, I and 
d. This estimate could be very useful as a starting point in various types of numerical 
schemes intended for calculation of eigenvalues to arbitrary accuracy. It is in the same 
spirit that we also write down, towards the end of the paper, a formula for the energy 
levels of the quartic anharmonic oscillator ( V = imw r - r + A  ( r  * r)*) in d dimensions. 
This generalises the expression of the d = 1 case presented in a recent note by Mathews 
et a1 (1981). 

The approximate expression that we give below for the energy eigenvalue E$ ( A  1 of 
the Hamiltonian 

2 

1 
H'"' = ~ p - p +$mw'r * r + h ( r  - ri' 

F P / $ )  = 

2m 

(where r and p = -iV are position and momentum operators in d(=  1,2 ,  3) dimensions) 
is nothing but the expectation value of H'd', calculated with respect to the basis states of 
a 'renormalised harmonic oscillator'. The details of how to choose the renormalised 
frequency wo(n, I ,  A )  so as to make the expectation value quite close to the actual energy 
will be discussed in the next section. We may also mention here that the work of 
Banerjee and co-workers (1978) for the one-dimensional oscillator also rests on the use 
of renormalised basis states, but their aim is not to obtain a simple analytic formula for 
E,, but to compute E,, numerically to high accuracy?. 

2. Energy values of the pure quartic oscillators 

The Hamiltonian for a particle moving in a quartic potential 

V = / \ ( r  *r12  

(where r = ( r l ,  r2 ,  . . . , r d )  and d = (1 ,2 or 3)) is given by$ 

i Killingbeck (1981) has developed a perturbation series method for the one-dimensional AHO using a 
renormalised harmonic oscillator basis states, but his perturbation series is expected to be divergent. The 
divergent Rayleigh-Schriidinger series is known to be summable by the method of Pade approximants 
(Loeffel er al 1969), and one of tbe referees has stated that Austin and Killingbeck have found similar Pade 
summability for Killingbeck's renormalised perturbation series. 
i The results for the potential V = $mw2r * r + Air r)* will be mentioned at the end. 
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A scaling argument shows readily that the eigenvalues of (2) are (AZ24/m2)"3 times 
those of $p p + ( r  - r )2 and we can therefore assume without loss of generality that 
m = A = h = 1. We consider now the matrix representation of in a harmonic 
oscillator basis which diagonalises 

- 2p * p + T W o f  (3) Hid) -1 1 2  
f 

where o0 is a renormalised frequency. The non-vanishing matrix elements of 
easily determined (Bell 1970): 

are 

(n, 1 IH'd'Jn, I )  3 H,, 

= {$(n + i d )  + f ~ , ~ [ 6 n ( n  + d )  -21(1+ d -2) + d(d  + ~ ) ] } w o  (4a 1 

=;"o2[(n-I+2)(n -1+4)(n + l + d ) ( n  + 1 + d + 2 ) y 2  (4c)  

where n = 0 , 1 , 2 , .  . . and for given n, 1 takes valuest n, n -2, n -4,. . . , 1 or 0. The 
frequency w0 is arbitrary and, as yet, undetermined. For a given n and I ,  we wish to 
choose o0 in such a way that the diagonal element ( 4 a )  closely approximates the actual 
eigenvalue E!,:). The fairly obvious idea that this may become possible if we make the 
matrix elements immediately close to H,, (namely Hna2., and H,,,,2) as small as 
possible leads to the condition 

( 5 )  

We shall see that with slight modifications of this equation (dictated by what is known 
about the asymptotic-large-n-limit of E, and other considerations) the energy 
eigenvalues with quite high accuracy are obtained from (4a): 

(6) 

3 
00 = 4(n +id). 

EL:: -- H,, = {i( n + i d )  + $wO3 [6n (n  + d )  - 21( I + d - 2) + d (d + 2 ) ] } ~ 0 .  

2.1 Refinement in the choice of WO 

the two leading orders in (n +$), 
(i) One-dimensional case (d  = 1). In the large-n limit, equations ( 5 )  and ( 6 )  yield, to 

E -  1.389(n +i)4/3 (7) 

Equation (7) has the same form as the two leading terms in the asymptotic WKB 
expression (Hioe and Montroll 1975, Pasupathy and Singh 1980). In the latter, 

where C = 3 " / ' . ~ ~ [ r ( f ) ] - * ' ~  = 1.376 5074 and 8 = 1/9m = 0.0354. The values in (7) 
namely 1.389 and 3/28 are not very far from the corresponding WKB ones. It is readily 
seen that adjustment of these coefficients can be accomplished by modifying the 

t For d = 2, the angular momentum is actually f.1 but the energy is degenerate with respect to the sign. 
Clearly 1 = 0 for the one-dimensional oscillator. 
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defining equation for wo to 

The large-n limit of E of equation (6) then retains the same form as (7) but with the two 
leading coefficients modified to 

& ( 4 / ~ ) ” ~ ( 1  +$a)  19) 

and 

i 10) 

respectively. 
Note that only a is involved in the leading coefficient, and that the second coefficient 

involves c linearly. By requiring (9) and (10) to have the WKB values we find the values 
needed for a and c to be 

a = 0.895 647 259 (11) 

c = -0.85. (12) 

The energies now calculated from (6) and (8) are given in table 1, and as can be seen, 
they are in good agreement with numerical results of Banerjee et a1 (1978) not only in 
the region of large n but over the entire range of n values. It may be mentioned here 
that in a recent note by us (Mathews et a1 1981) a more general formula applicable to 
anharmonic oscillators in one dimension ( V = $mo2x2  + Ax4) was presented. It 
involves, besides the same a and c as above, one more parameter b. The generalisation 
of that formula to d dimensions is given in equations (15) and (16) below. 

(ii) d = 3. It is well known that the s-wave levels in a spherically symmetric 
potential are the same as the odd-parity levels of the one-dimensional system with the 

Table 1. Energy levels of the pure quartic oscillator in one dimension 

n Energy E:; 

0 

2 

4 

6 

8 

10 

20 

48 

0.675 
(68 I 

4.700 
(697) 

10.244 92 
(31) 

16.712 1 
(1 9) 

23.890 1 
(0 0 )  

31.659 54 
(46) 

77.236 11 
(08) 

243.467 364 
(38) 
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same potential, More precisely EL:A = Consequently the WKB limit has the same 
form as in the one-dimensional case and hence also the same values of the parameters a 
and c in wo (equation (8)). One sees from the expression (6) that E:; decreases as 1 
increases (for fixed n), through a term proportional to 1 ( 1 +  1). While this is found to 
take care of the 1 dependence very well for large n, small deviations from the available 
numerical results appear when n is small. An empirical modification, consisting of a 
change in the defining equation of wo to 

3 4(n + i d )  
WO = 

a + [c + eZ(l+ d - 2)] / (n  + i d ) z  

with e = -0.1 almost wipes out even these discrepancies, reducing the residual error to 
less than 1% at the worst (which occurs for small n ) .  The form (13) is chosen in order 

Table 2. Energy levels E$ of the pure quartic oscillator in two dimensions. 

2 4 6 8 

0 

2 

4 

6 

8 

to 

20 

48 

1.490 

6.001 6 
(3 4) 

11.801 4 
(2 4) 

18.458 05 
(82) 

25.791 17 
(79) 

33.693 8 
(4 3) 

79.763 7 
(4 1) 

246.823 10 
(26) 

(77) 
5.671 

11.545 
(35) 

18.249 3 
(5 4) 

25.613 2 
(1 5) 

33.537 4 
(6 6) 

79.661 5 
(1 7) 

246.764 9 
(5 1) 

(24) 
10.82 

(76) 
17.640 

(16) 
25.088 

(76) 
33.073 

(67) 
79.355 84 

246.59041 
(19) 

(64) 

16.68 
(60) 

24.240 
(01) 

32.316 
(295) 

78.849 3 
(6 3) 

246.299 89 
(300 07) 

23.12 
(01) 

31.292 
(33) 

78.146 
(38) 

245.893 797 
(12) 

~ 

1 3 5 7 9 

1 3.424 
(398) 

3 8.704 2 8.15 

5 14.978 6 14.526 13.671 
(7 8 )  (09) (01) 

7 21.999 662 21.618 7 20.880 19.83 

9 29.634 71 29.304 28.654 27.71 26.52 

11 39.798 09 37.503 6 36.923 36.071 34.972 

21 84.841 9 84.643 92 84.249 5 83.662 82.885 

49 253.547 47 253.432 66 253.203 20 252.859 45 252.401 93 

(0 4) (09) 

(00) (1 3) (50) (74) 

(88) (00) (38) (67) (40) 

(35) (1 5) (13) (42) (02) 

(2 2) (86) (8 2) (57) (74) 

(65) (87) (43) (57) (59) 
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Table 3. The energy levels E:; of the pure quartic oscillator in three dimensions. 

I 
n 0 2 4 6 8 

. . 

0 2.41 

2 7.335 I 6.879 
(7 oi (30) 

4 13.379 69 13.019 12.22 
(34) (05)  (16) 

6 20.221 0 19.922 19.225 18.24 
(0 91 (16) 1181 I151 

8 27.706 49 27.449 1 26.859 25.963 24.80 
(39) (5 9 )  (45) 119) (69)  

10 35.740 380 31.512 9 34.988 4 34.182 33.12 
(12) (1  0 )  I O  21 (57) (06 I 

(39) 

20 82.299 370 82.148 51 81.797 7 8 1.249 8 80.5 1 
(45) (23) ( 6  5 )  ( 5  9) 1501 

48 250.183 369 250.096 671 249.894 504 249.577 179 249.145 2 
(511 (791 145 138: 14 8)  

__.___ - - -~ - . . .. .. ._ 

1 3 (J 5 ? 

- ~. .~ ~ ~..- ... . ... . ~ . .... .. 

1 4.51 

3 10.108 9.458 
(00) (01) 

5 16.602 16.067 15.16 
(00) (46) 108) 

7 23.797 6 23.341 22.546 2 1.46 

9 31.578 86 31.179 0 30.474 29.490 28.26 
(08) (3  6) (55) 136) i 141 

11 39.869 49 39.512 38.877 37.982 36.85 
(01) (09) i65) 149) 177) 

21 87.392 96 87.149 3 86.712 6 86.086 1 8-5.2 7 5 

49 256.916 238 256.773 69 256.517 316 256.147 50 255.664 80 

(48) 

(6 2) (32) (081 136) 

(87) (8 8) (0  61 10 5) 162) 

(20) (74) (38) 137) i 15i 

that the asymptotic expression (for large n )  should have the same form as with old 
definition of W O ,  except for the necessary small changes in the values of the numerical 
coefficients appearing in the leading two orders. The values of E$ calculated from (6) 
with wo, a, c and e given by (13), (11) and (12) are tabulated (table 3) and found to be in 
good agreement over the entire range of n and I for which accurate numerical values are 
available from earlier works?. 

(iii) d = 2. The common formula equations (6) and (13) applicable to d = 1 and 
d = 3 was itself found to be very accurate for d = 2 also, with the parameters a, c and e 
having the same values as in (11) and (12). The results are given in table 2. 

'r One of the referees has intimated that according to unpublished calculations by Killingbeck based on the 
renormalised perturbation series, the results of Bell et a1 (1970b) in the case d = 3 are  slightly in error ( in  the 
last one or two decimal places given) for n 20. 
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3. Discussion 

The results for different n, 1 in the three cases d = 1 , 2  and 3 are presented in tables 1 , 2  
and 3. Only the last one or two digits in the tabulated values differ from the 
corresponding digits (shown in brackets below each number) of the accurate values 
obtained by earlier workers through very elaborate computations. 

A few observations on our results are in order. Firstly, the estimation of the 
ground-state and the first-excited-state energy values is not as good as for higher levels. 
The reason is basically that, while for other values of n(n  2 2 )  the effects of the 
off -diagonal elements Hmm, with m + m’ < 2n are largely counterbalanced by those with 
m + m’ > 2n, for n = 0 and n = 1 there is an imbalance because no non-vanishing Hmm8 
with m + m’ < 2n exist. The obvious remedy is to add a correction to H,,,, to take 
account of the off-diagonal elements very close to Hoo or H l l  as the case may be?. 
Secondly, as we have seen above, for given n we have adopted a renormalised 
frequency wo(n) by equation (13) and the nth diagonal element H,,, of the Hamiltonian 
matrix in the basis of this renormalised wo then closely approximates the actual energy 
E,,. The merit of our prescription for choosing wo(n) is that the smallest eigenvalue E,, of 
the matrix X= H - H,,,,I (where I is a unit matrix) turns out to be close to zero thereby 
showing that the off-diagonal elements of H around H,,, (in the basis of wo(n))  
contribute only a small correction to H,,,. In table 4 we exhibit for a typical case, n = 45, 
1 = 9 the values of E,  when X is truncated to be a ( 2 M  + 1 )  x ( 2 M  + 1) matrix with 
elements 

Rij = H2i-n,2j-n -Hnnsij ( i , j  = n - M ,  . . . , n + M ) .  

We observe from table 4 that as M increases the value of E,, stabilises, and the corrected 
energy H,, + E ,  coincides with the Bell etaZ(1970b) valueS. Thirdly, for both two- and 
three;dimensional oscillators, the energy will decrease with 1 (for fixed n ) .  The formula 
given by Quigg and Rosner for the WKB regime depends only on n + 1, and as such, for 
fixed n, predicts an increase of E which is incorrect (cf the table of E,,, computed by Bell 
et all .  

Table 4. Residual correction to the eigenvalue with n = 45, I = 9. 
845.9 = E45.9 + E ,  = 228.822 394 + E,. 

M Ell E45.9 + E. 

2 -0.160 332 228.662 062 
3 -0.822 558 227.999 836 
5 -0.066 226 228.756 168 
8 -0.000 192 228.822 202 

10 -0.000 960 228.821 434 
12 -0.000 988 228.821 406 
15 -0.000 997 228.821 397 

(228.821 395) 

t What is shown against n = O  in the tables is not HA$ but the lower of the eigenvalues of the matrix 

in a representation with oo given by (13) with a - 1 = c = e = 0. For n = 1 also the effect of the 
( H i t )  H:d’ 
nearest off-diagonal elements HE’, Hid) has been taken into account in a similar fashion. * A powerful algorithm for estimating E numerically to a high accuracy (one part in 10”) has been developed 
by one of us (PMM) the details of which will be published separately. 
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Finally we give below an expression for the eigenvalues E::; of the anharmonic 

[ 14) 

E!,:; = {$v-’(n + i d ) ( l +  v2)+kp2v2[6n(n + d )  -21(1 +d - 2 )  + d ( d  +2)] }hw (15) 

where p Z = 2 A A / m 2 w 3  and v = w / w o  is the solution lying between 0 and 1 of the 
algebraic equation 

oscillator Hamiltonian in d G 3 dimensions. 

H = p 2 / 2 m  +$mw2r * r +A(r * r)’ 

c+e l ( l+d-2 )  
(2n + d)p2v3 = ( 1  - v2) 1 +(a  - 1 ) ( 1 -  v 2 )  +bv2+ 

( n  + (16) 

where the values of the constants a,  c and e are the same as in equations ( 1 1 )  and (12) 
and 

b = -0.125 020. 

This value of b was found necessary in order that in the WKB limit, the coefficient of the 
next to the leading term in A of the energy (namely 0.268 055 A-1/3(n +$)2’3)  is also 
reproduced correctly by (15) .  

The special case of this formula with d = 1 was first proposed by Mathews et a1 
(1981) who demonstrated its accuracy over the entire domain of IZ and A values. Also as 
w + 0 (for any d )  equations ( 1 5 )  and (16) do go over into the equations (6)  and (13) of 
the pure quartic case which were considered in detail in this paper. In view of the 
experience with both these special cases ( d  = 1,  w arbitrary; w .+ 0, d = 1,2,3) it is to be 
expected that the formula (15) will yield results of the same kind of accuracy also for 
d = 2, 3 with w # 0. We do not present any numerical results for these anharmonic 
oscillators, however, as no independently computed values are available in the lit- 
erature for comparison purposes. 
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Note added in proof. The n of Quigg and Rosner is the radial quantum number n, and is related to our n as 
n = 2n,  + 1. The Quigg-Rosner levels with different sets of values of n, and 1 but with a fixed I I  are therefore 
degenerate in energy. The !-dependent term in our formula (6) removes this degeneracy. The 1-dependence 
of the Quigg-Rosner formula is spurious in the same sense as that of the formula for the hydrogen atom would 
be if it were written in terms of the radial quantum number as constant/(n, + i + 1 i 2  
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